BoxSand Electric Fields Quantitative Problems

- **1.** At a distance r_1 from a point charge, the magnitude of the electric field created by the charge is 359 N/C. At a distance r_2 from the charge, the field has a magnitude of 243 N/C. Find the ratio r_2/r_1 .
- **2.** Four point charges have the same magnitude of 3.6×10^{12} C and are fixed to the corners of a square that is 3.50 cm on a side. Three of the charges are positive and one is negative. Determine the magnitude of the net electric field that exists at the center of the square.
- 3. A proton and an electron are moving due west in a constant electric field that also points due west. The electric field has a magnitude of $6.5 \cdot 10^4$ N/C. Determine the magnitude of the acceleration of the proton and the electron.
- **4.** Two point charges are located along the x axis: $q_1 = +5.0 \,\mu\text{C}$ at $x_1 = +3.0 \,\text{cm}$, and $q_2 = +7.0 \,\mu\text{C}$ at $x_2 = -5.0 \,\text{cm}$. Two other charges are located on the y axis: $q_3 = +4.0 \,\mu\text{C}$ at $y_3 = +6.0 \,\text{cm}$, and $q_4 = -7.0 \,\mu\text{C}$ at $y_4 = +9.0 \,\text{cm}$. Find the net electric field (magnitude and direction) at the origin.
- **5.** The total electric field **E** consists of the vector sum of two parts. One part has a magnitude of $E_1 = 1300$ N/C and points at an angle of $\theta_1 = 45$ degrees above the +x axis. The other part has a magnitude of $E_2 = 1600$ N/C and points at an angle of $\theta_2 = 65$ degrees above the +x axis. Find the magnitude and direction of the total field. Specify the directional angle relative to the +x axis.
- **6.** Two particles are in a uniform electric field that points in the +x direction and has a magnitude of 3500 N/C. The mass and charge of particle 1 are $m_1 = 2.4 \cdot 10^{-5}$ kg and $q_1 = -9.0 \,\mu$ C, while the corresponding values for particle 2 are $m_2 = 1.6 \cdot 10^{-5}$ kg and $q_2 = +22 \,\mu$ C. Initially the particles are at rest. The particles are both located on the same electric field line but are separated from each other by a distance d. Particle 1 is located to the left of particle 2. When released, they accelerate but always remain at this same distance from each other. Find d.